函数教学反思
身为一名刚到岗的教师,我们要在课堂教学中快速成长,写教学反思可以快速提升我们的教学能力,教学反思应该怎么写才好呢?下面是小编收集整理的函数教学反思,希望能够帮助到大家。
函数教学反思1函数是高中数学中一个非常重要的内容之一,它贯穿整个高中阶段的数学学习,乃到一生的数学学习过程。
其重要性主要体现在:
1、函数本身源于在现实生活,例如自然科学乃至于社会科学中,具有广泛的应用。
2、函数本身是数学的重要内容,是沟通代数、几何、三角等内容的桥梁。亦是今后进一步学习高等数学的基础和方法。
3、函数部分内容蕴涵大量的重要数学方法,如函数的思索,方程的思想,分类讨论的思想,数形结合的思想,化归的思想,换元法,侍定系数法、配方法等。这些思想方法是进一步学习数学和解决数学问题的基础,是我们教学过程中应注意重点讲解学生重点掌握的部分。
函数教学反思2在当前的初中数学教学中,教师除了重视数学知识的传授,越来越多的老师开始关注数学知识和学生的实际生活的联系。使学生对生活中的数学从熟视无睹,缺乏兴趣,慢慢过渡到约束学解决生活中的问题。数学家严士健先生说过,数学教学应结合日常生活及其他领域中的问题,举出更好的例子、更好的问题,以使学生体验数学与生活的联系,训练学生应用数学分析问题解决问题的能力。因此在本节课中,我收集了生活中的一些实际应用的例子,引导学生用数学的眼光从生活中捕捉数学 ……此处隐藏13302个字……系数决定,一次项系数和常数项主要是确定位置。所以抛物线的平移的前提条件是二次项的系数不变,规律是“上加下减,左加右减”。
5、根据图像来判断一些代数式的符号。主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和-1时的函数值来确定。
二、成功之处:
(一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-1,-6),并且该图象过点P(2,3),求这个二次函数的表达式中,设计了两个问题:
1、通过已知顶点A的坐标(-1,-6),你从中还能获取什么信息?
2、在不改变已知条件的前提下,你能选用“一般式”吗?
设计意图是:
1、由顶点(-1,-6),可知对称轴是直线x=-1,函数的最大(小)值是-6。从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”。
2、挖掘顶点坐标的内涵:(1)由抛物线的轴对称性,可求出点P(2,3)关于对称轴x=-1对称点P’的坐标是(-4,3);(2)用点A、点P和对称轴;(3)用点A、点P和顶点的纵坐标等。
3、得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯。
(二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力。
三、遗憾之处:在课题引入后,由于对学生估计不足,复习中学生还习惯有老师引着做,因此在处理完复习一后用时间相对较多,对于后面的教学造成小的影响,特别是对于复习三的处理时不够充分,造成一点遗憾。